Partie I Chapitre 1 : L’ordre dans le monde naturel

Partie II Chapitre 2 : Environnement physique des organismes
 Chapitre 3 : Eau et solutés
 Chapitre 4 : Energie et chaleur
 Chapitre 5 : Réponses aux variations environnementales
 Chapitre 6 : Facteurs biologiques dans l’environnement
 Chapitre 7 : Le climat à différentes échelles

Partie III Chapitre 8 : Le concept d’écosystème
 Chapitre 9 : Flux d’énergie
 Chapitre 10 : Les cycles bio-géochimiques globaux
 Chapitre 11 : Régénération des nutriments à l’intérieur des compartiments terrestres et aquatiques

Partie IV Chapitre 12 : Structure des populations
 Chapitre 13 : Croissance des populations
 Chapitre 14 : Régulation des populations
 Chapitre 15 : Fluctuations et cycles des populations
• Facteurs biotiques
 • Ce sont tous les facteurs liés aux organismes qui partagent le même milieu
 • Par rapport aux facteurs abiotiques, les facteurs biotiques:
 • présentent des traits interactifs
 • favorisent la diversification adaptative plutôt que la convergence (micro-environnement biologique)
 • engendrent des micro-habitats (micro-environnement physique)
• Les adaptations des prédateurs (carnivores) montrent l’importance des facteurs biotiques en tant qu’agents de sélection naturelle

• La taille de la proie est généralement proportionnelle à la taille du prédateur
• Des systèmes et stratégies sont développés pour localiser, capturer les proies et les manger
Les proies se défendent

- L’évitement dans l’espace ou le temps
- Passer inaperçu par mimétisme
- Effets répulsifs par accumulation de substances toxiques
- Simulacre
- Phéromones d’alarme

(Ricklefs & Miller, 2000)
• Les herbivores doivent s’adapter à leurs plantes

• Des préférences pour certaines plantes ou parties de plantes

• Les insectes phytophages sont attirés par des substances chimiques émises par les plantes hôtes, ou par des formes et couleurs spécifiques

(Ricklefs & Miller, 2000)
• Un « appareil buccal » de circonstance
• Une relation entre herbivore et qualité chimique des tissus: appétence, qualité nutritionnelle et digestibilité différenciées selon les parties de la plante
• Des symbioses et adaptations morphologiques du tube digestif pour la digestion plus difficile des tissus végétaux

<table>
<thead>
<tr>
<th>Leaf attribute</th>
<th>Range of values</th>
<th>Correlation coefficient (r)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total phenols</td>
<td>1.7–22.6</td>
<td>-0.10</td>
</tr>
<tr>
<td>Cellulose (% dry mass)</td>
<td>10.2–30.4</td>
<td>-0.47**</td>
</tr>
<tr>
<td>Lignin (% dry mass)</td>
<td>3.3–20.8</td>
<td>-0.23</td>
</tr>
<tr>
<td>Physical</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Toughness (Newtons)</td>
<td>2.5–11.6</td>
<td>-0.52</td>
</tr>
<tr>
<td>Undersurface hairs (number mm⁻²)</td>
<td>0–18</td>
<td>0.64**</td>
</tr>
<tr>
<td>Nutritional</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water (%)</td>
<td>49–82</td>
<td>0.51**</td>
</tr>
<tr>
<td>Nitrogen (% dry mass)</td>
<td>1.7–3.1</td>
<td>0.29*</td>
</tr>
</tbody>
</table>

(Ricklefs & Miller, 2000)
• Les plantes se défendent aussi

• Par rapport aux animaux, elles ont l’avantage de **survivre**, car, en général consommées seulement partiellement

• Mécanismes de défense morphologiques et chimiques (produits métaboliques secondaires)

• Forte **co-évolution** et spécialisation