Jérôme Orivel

Research interests

I am interested in the mechanisms underlying species distribution and the evolution of interspecific interactions. With social insects as study systems and especially ants, current projects focus on the processes affecting community assembly rules in leaf-litter ants, the evolution of specific, multipartite interactions and the diversity and evolution of venom peptides in ants.


tél. : (+594) 5 94 32 92 96

fax : (+594) 5 94 32 43 02

email : jerome.orivel at EcoFoG.gf


Since 2012 DR2 CNRS, UMR Ecofog, Kourou.
2010 CR1 CNRS, UMR Ecofog, Kourou.
2007 Habilitation qualification (Habilitation à Diriger des Recherches), Université Toulouse III.
2005 CR1 CNRS, Laboratoire EDB, Université Toulouse III.
2003 CR2, Laboratoire Evolution et Diversité Biologique, Université Toulouse III.
2001 Chargé de recherche CNRS (CR2), Laboratoire d’Etude du Comportement Animal, Université Toulouse III.
2000-2001 Post doctoral researcher, Department of Zoology, Tel Aviv University.
2000 PhD, Université Paris XIII.

Current research projects




Associate Editor


Since 2008. Insect Conservation & Diversity (Home Page)


Axel Touchard. Biochemistry and proteomics of ant venom peptides.

Hadrien Lalagüe. Genomics and Transcriptomics of ant venoms.


Axel Cerdan. Diversité des invertébrés d’eau douce de Guyane. Cosupervisor: Jérôme Murienne



Fabrice Marger. 2011-2013. Electrophysiology and pharmacology of venom toxins.

Mario Xavier Ruiz-Gonzalez. 2008-2009. Molecular ecology of an ant-fungus interaction.


Mélanie Fichaux. Disentangling drivers of amazonian ant community structure across geographic and environmental gradients.

Alex Salas-Lopez. Trophic diversity and quantification of ecosystem processes in ants.

Axel Touchard. Biodiversity, biochemistry and pharmocology of bioactive peptides from ant venoms. Cosupervisor: Pierre Escoubas

Jérémie Lauth. Tripartism in a mutualistic interaction between ants, plants and fungi. Cosupervisors: Alain Dejean & Céline Leroy.

Pierre Jean Malé. 2007-2011. Molecular ecology of an ant-plant association. Co-supervisor: Angélique Quilichini

Julien Grangier. 2004-2008. Evolutionary stability in an obligate and specific ant-plant mutualism. Co-supervisor: Alain Dejean

Latest publications

Articles in international journals

P-126. Ramalho MO, Duplais C, Orivel J, Dejean A, Gibson JC, Suarez AV, Moreau C. 2020. Development but not diet alters microbial communities in the neotropical arboreal trap jaw ant Daceton armigerum: an exploratory study. Scientific Reports, 10:7350.


To better understand the evolutionary significance of symbiotic interactions in nature, microbiome studies can help to identify the ecological factors that may shape host-associated microbial communities. In this study we explored both 16S and 18S rRNA microbial communities of D. armigerum from both wild caught individuals collected in the Amazon and individuals kept in the laboratory and fed on controlled diets. We also investigated the role of colony, sample type, development and caste on structuring microbial communities. Our bacterial results (16S rRNA) reveal that (1) there are colony level differences between bacterial communities; (2) castes do not structure communities; (3) immature stages (brood) have different bacterial communities than adults; and 4) individuals kept in the laboratory with a restricted diet showed no differences in their bacterial communities from their wild caught nest mates, which could indicate the presence of a stable and persistent resident bacterial community in this host species. The same categories were also tested for microbial eukaryote communities (18S rRNA), and (5) developmental stage has an influence on the diversity recovered; (6) the diversity of taxa recovered has shown this can be an important tool to understand additional aspects of host biology and species interactions.

P-125. Zinger L, Donald J, Brosse Sb, Gonzalez MA, Iribar A, Leroy C, Murienne J, Orivel J, Schimann H, Taberlet P, Martins Lopes C. 2020. Advances and prospects of environmental DNA in neotropical rainforests. Advances in Ecological Research, 62: 331-373.


The rainforests of the Neotropics shelter a vast diversity of plant, animal and microscopic species that provide critical ecosystem goods and services for both local and worldwide populations. These environments face a major crisis due to increased deforestation, pollution, and climate change, emphasizing the need for more effective conservation efforts. The adequate monitoring of these ecosystems has proven a complex and time consuming endeavour, which depends on ever dwindling taxonomic expertise. To date, many species remain undiscovered, let alone described, with otherwise limited information regarding known species population distributions and densities. Overcoming these knowledge shortfalls and practical limitations is becoming increasingly possible through techniques based on environmental DNA (eDNA), i.e., DNA that can be obtained from environmental samples (e.g. tissues, soil, sediment, water, etc.). When coupled with high-throughput sequencing, these techniques now enable realistic, cost-effective, and standardisable biodiversity assessments. This opens up enormous opportunities for advancing our understanding of complex and species-rich tropical communities, but also in facilitating large-scale biomonitoring programs in the neotropics. In this review, we provide a brief introduction to eDNA methods, and an overview of their current and potential uses in both terrestrial and aquatic ecosystems of neotropical rainforests. We also discuss the limits and challenges of these methods for our understanding and monitoring of biodiversity, as well as future research and applied perspectives of these techniques in neotropical rainforests, and beyond.

P-124. Privet K, Vedel V, Fortunel C, Orivel J, Martinez Q, Cerdan A, Baraloto C, Pétillon J. 2020. Relative efficiency of pitfall trapping vs. nocturnal hand collecting in assessing soil-dwelling spider diversity along a structural gradient of neotropical habitats. Diversity, 12: 81.


Assessing spider diversity remains a great challenge, especially in tropical habitats where dozens of species can locally co-occur. Pitfall trapping is one of the most widely used techniques to collect spiders, but it suffers from several biases, and its accuracy likely varies with habitat complexity. In this study, we compared the efficiency of passive pitfall trapping versus active nocturnal hand collecting (NHC) to capture low understory-dwelling spider taxonomical (morpho-species) and functional (hunting guilds) diversity along a structural gradient of habitats in French Guiana. We focused on four habitats describing a structural gradient: garden to the orchard to the forest edge to the undisturbed forest. Overall, estimated morpho-species richness and composition did not vary consistently between habitats, but abundances of ground-hunting spiders decreased significantly with increasing habitat complexity. We found habitat-dependence differences in taxonomic diversity between sampling strategies: NHC revealed higher diversity in the orchard, whereas pitfalls resulted in higher diversity in the forest. Species turnover resulted in high dissimilarity in species composition between habitats using either method. This study shows how pitfall trapping is influenced by habitat structure, rendering this sampling method incomplete for complex, tropical environments. However, pitfall traps remain a valuable component of inventories because they sample distinct assemblage of spiders.

P-123. de Aguiar HJAC, Campos Barros LA, Silveira LI, Petitclerc F, Etienne S, Orivel J. 2020. Cytogenetic data for sixteen ant species from North-eastern Amazonia with phylogenetic insights into three subfamilies. Comparative Cytogenetics, 14: 43-60.


Ants play essential roles in most terrestrial ecosystems and may be considered pests for agriculture and agroforestry. Recent morphological and molecular data have challenged conventional ant phylogeny and the interpretation of karyotypic variations. Existing Neotropical ant cytogenetic data focus on Atlantic rainforest species, and provide evolutionary and taxonomic insight. However, there are data for only 18 Amazonian species. In this study, we describe the karyotypes of 16 ant species belonging to 12 genera and three subfamilies, collected in the Brazilian state of Amapá, and in French Guiana. The karyotypes of six species are described for the first time, including that of the South American genus Allomerus Mayr, 1878. The karyotype of Crematogaster Lund, 1831 is also described for the first time for the New World. For other species, extant data for geographically distinct populations was compared with our own data, e.g. for the leafcutter ants Acromyrmex balzani (Emery, 1890) and Atta sexdens (Linnaeus, 1758). The information obtained for the karyotype of Dolichoderus imitator Emery, 1894 differs from extant data from the Atlantic forest, thereby highlighting the importance of population cytogenetic approaches. This study also emphasizes the need for good chromosome preparations for studying karyotype structure.

P-122. Servigne P, Orivel J, Azémar F, Carpenter J, Dejean A & Corbara B. 2020. A nesting association between fierce social wasps and aggressive ants enabled by the containment behavior of the wasps. Insect Science, 27: 122-132


Although the Neotropical territorially dominant arboreal ant Azteca chartifex Forel is very aggressive towards any intruder, its populous colonies tolerate the close presence of the fierce polistine wasp Polybia rejecta (F.). In French Guiana, 83.33% of the 48 P. rejecta nests recorded were found side by side with those of A. chartifex. This nesting association results in mutual protection from predators (i.e., the wasps protected from army ants; the ants protected from birds). We conducted field studies, laboratory- based behavioral experiments and chemical analyses to elucidate the mechanisms allowing the persistence of this association. Due to differences in the cuticular profiles of the two species, we eliminated the possibility of chemical mimicry. Also, analyses of the carton nests did not reveal traces of marking on the envelopes. Because ant forager flows were not perturbed by extracts from the wasps’ Dufour’s and venom glands, we rejected any hypothetical action of repulsive chemicals. Nevertheless, we noted that the wasps “scraped” the surface of the upper part of their nest envelope using their mandibles, likely removing the ants’ scent trails, and an experiment showed that ant foragers were perturbed by the removal of their scent trails. This leads us to use the term “erasure hypothesis.” Thus, this nesting association persists thanks to a relative tolerance by the ants towards wasp presence and the behavior of the wasps that allows them to “contain” their associated ants through the elimination of their scent trails, direct attacks, “wing-buzzing” behavior and ejecting the ants.

P-121. Ruiz-González MX, Leroy C, Dejean A, Gryta H, Jargeat P, Armijos Carrión AD & Orivel J. 2019. Do host plant and associated ant species affect microbial communities in myrmecophytes? Insects, 10:391.


Ant-associated microorganisms can play crucial and often overlooked roles, and given the diversity of interactions that ants have developed, the study of the associated microbiomes is of interest. We focused here on specialist plant-ant species of the genus Allomerus that grow a fungus to build galleries on their host-plant stems. Allomerus-inhabited domatia, thus, might be a rich arena for microbes associated with the ants, the plant, and the fungus. We investigated the microbial communities present in domatia colonised by four arboreal ants: Allomerus decemarticulatus, A. octoarticulatus, A. octoarticulatus var. demerarae, and the non-fungus growing plant-ant Azteca sp. cf. depilis, inhabiting Hirtella physophora or Cordia nodosa in French Guiana. We hypothesized that the microbial community will differ among these species. We isolated microorganisms from five colonies of each species, sequenced the 16S rRNA or Internal TranscribedSpacer (ITS) regions, and described both the alpha and beta diversities. We identified 69 microbial taxa, which belong to five bacterial and two fungal phyla. The most diverse phyla were Proteobacteria and Actinobacteria. The microbial community of Azteca cf. depilis and Allomerus spp. differed in composition and richness. Geographical distance affected microbial communities and richness but plant species did not. Actinobacteria were only associated with Allomerus spp.

P-120. Franco W, Ladino N, Delabie JHC, Dejean A, Orivel J, Fichaux M, Groc S, Leponce M & Feitosa RM. 2019. First checklist of the ants (Hymenoptera: Formicidae) of French Guiana. Zootaxa, 4674: 509-543.


We provide here a checklist of the ants of French Guiana, an overseas department of France situated in northern South America, with a very low human population density and predominantly covered by old-growth tropical rainforests. Based on 165 scientific papers, specimens deposited in collections, and unpublished surveys, a total of 659 valid species and subspecies from 84 genera and 12 subfamilies is presented. Although far from complete, these numbers represent approximately 10% of the ant diversity known to occur in the Neotropical realm. Additionally, three ant genera and 119 species are reported for the first time for French Guiana. Finally, five species are recognized as erroneous records for the the department in the literature. This checklist significantly expands the basic knowledge of the ants in the Guiana Shield, one of the world’s most important biodiversity hotspots.

P-119. Sprenger PS, Hartke J, Feldmeyer B, Orivel J, Schmitt T, Menzel F. 2019. Influence of mutualistic lifestyle, mutualistic partner, and climate on cuticular hydrocarbon profiles in parabiotic ants. Journal of Chemical Ecology, DOI:10.1007/s10886-019-01099-9


A vital trait in insects is their cuticular hydrocarbon (CHC) profile, which protects the insect against desiccation and serves in chemical communication. Due to these functions, CHC profiles are shaped by both climatic conditions and biotic interactions. Here, we investigated CHC differentiation in the neotropical parabiotic ant species Crematogaster levior and Camponotus femoratus, which mutualistically share a nest. Both consist of two cryptic species each (Cr. levior A and B and Ca. femoratus PAT and PS) that differ genetically and possess strongly different CHC profiles. We characterized and compared CHC profiles of the four cryptic species in detail. Our results suggest that Cr. levior A, Ca. femoratus PAT and Ca. femoratus PS adapted their CHC profiles to the parabiotic lifestyle by producing longer-chain CHCs. At the same time, they changed their major CHC classes, and produce more alkadienes and methyl-branched alkenes compared to Cr. levior B or non-parabiotic species. The CHC profiles of Cr. levior B were more similar to related, non-parabiotic species of the Orthocrema clade than Cr. levior A, and the chain lengths of B were similar to the reconstructed ancestral state. Signals of both the parabiotic partner (biotic conditions) and climate (abiotic conditions) were found in the CHC profiles of all four cryptic species. Our data suggest that mutualisms shaped the CHC profiles of the studied species, in particular chain length and CHC class composition. Beside this, signals of the parabiotic partners indicate potential impacts of biotic interactions, via chemical mimicry or chemical camouflage.

P-118. Vleminckx J, Schimann H, Decaëns T, Fichaux M, Vedel V, Jaouen G, Roy M, Lapied E, Engel J, Dourdain A, Petronelli P, Orivel J, Baraloto C. 2019. Coordinated community structure among five taxonomic groups in Amazonian rainforests. Scientific Reports, 9: 11337.


Little is known regarding how trophic interactions shape community assembly in tropical forests. Here we assess multi-taxonomic community assembly rules using a rare standardized coordinated inventory comprising exhaustive surveys of five highly-diverse taxonomic groups exerting key ecological functions: trees, fungi, earthworms, ants and spiders. We sampled 36 1.9-ha plots from four remote locations in french Guiana including precise soil measurements, and we tested whether species turnover was coordinated among groups across geographic and edaphic gradients. All species group pairs exhibited significant compositional associations that were independent from soil conditions. For some of the pairs, associations were also partly explained by soil properties, especially soil phosphorus availability. our study provides evidence for coordinated turnover among taxonomic groups beyond simple relationships with environmental factors, thereby refining our understanding regarding the nature of interactions occurring among these ecologically important groups.

P-117. Leponce M, Delabie JHC, Orivel J, Jacquemin J, Calvo Martin M, Dejean A. Tree-dwelling ant survey (Hymenoptera, Formicidae) in Mitaraka, French Guiana. Zoosystema 41: 163-179.


Ants constitute a substantial part of the arthropod biomass in rainforests. Most studies have focused on ground-dwelling ants, which constitute almost half of the diversity of the ant assemblage. We report here the results of the first survey of tree-dwelling ants in French Guiana on a plateau and in a swamp palm forest (Euterpe oleracea Mart.) in the Mitaraka Mountains. We were interested in seeing the effect of topography and geographic distance on species richness and composition and to gather information on the species distribution on tree trunks. The fauna of Mitaraka was compared with one from a site 350 km distant (Petit Saut). In total 105 trees were sampled (30, 30, 45 in the plateau and the swamp forests of Mitaraka, and in Petit Saut plateau forest, respectively). Arboreal ants were attracted using tuna and honey baits spread along a rope reaching an upper branch, except for the palm swamp forest where the baits were only placed at 2 m high. A total of 34, 13 and 22 species were observed in these three respective sites. Six of these species are new records for French Guiana. In Mitaraka Camponotus femoratus (Fabricius, 1804) and Crematogaster levior Longino, 2003 co-occurred on trees (parabiotic association) and were among the most common species, along with Crematogaster tenuicula Forel, 1904 which was found on other trees (species exclusion). The Mitaraka Mountains appeared more species rich and had a species composition distinct from Petit Saut. Topography also influenced ant species composition. Almost half of the species collected by the baitline method were exclusively foraging in the canopy.

P-116. Hartke J, Sprenger P, Sahm J, Winterberg H, Orivel J, Baur H, Beuerle T, Schmitt T, Feldmeyer B, Menzel F. 2019. Cuticular hydrocarbons as potential mediators of cryptic species divergence in a mutualistic ant association. Ecology & Evolution, 9: 9160-9176.


Upon advances in sequencing techniques, more and more morphologically identical or‐ ganisms are identified as cryptic species. Often, mutualistic interactions are proposed as drivers of diversification. Species of the neotropical parabiotic ant association between Crematogaster levior and Camponotus femoratus are known for highly diverse cuticular hydrocarbon (CHC) profiles, which in insects serve as desiccation barrier but also as communication cues. In the present study, we investigated the association of the ants’ CHC profiles with genotypes and morphological traits, and discovered cryptic species pairs in both genera. To assess putative niche differentiation between the cryptic species, we conducted an environmental association study that included various climate variables, canopy cover, and mutualistic plant species. Although mostly sympatric, the two Camponotus species seem to prefer different climate niches. However in the two Crematogaster species, we could not detect any differences in niche preference. The strong differentiation in the CHC profiles may thus suggest a possible role during speciation itself either by inducing assortative mating or by reinforcing sexual selection after the speciation event. We did not detect any further niche differences in the environmental parameters tested. Thus, it remains open how the cryptic species avoid competitive exclusion, with scope for further investigations.

P-115. Fichaux M, Béchade B, Donald J, Weyna A, Delabie JHC, Murienne J, Baraloto C, Orivel J. 2019. Habitats shape taxonomic and functional composition of Neotropical ant assemblages. Oecologia, 189: 501-513.


Determining assembly rules of co-occurring species persists as a fundamental goal in community ecology. At local scales, the relative importance of environmental filtering vs. competitive exclusion remains a subject of debate. In this study, we assessed the relative importance of habitat filtering and competition in structuring understory ant communities in tropical forests of French Guiana. Leaf-litter ants were collected using pitfall and Winkler traps across swamp, slope and plateau forests near Saül, French Guiana. We used a combination of univariate and multivariate analyses to evaluate trait response of ants to habitat characteristics. Null model analyses were used to investigate the effects of habitat filtering and competitive interactions on community assembly at the scale of assemblages and sampling points, respectively. Swamp forests presented a much lower taxonomic and functional richness compared to slope and plateau forests. Furthermore, marked differences in taxonomic and functional composition were observed between swamp forests and slope or plateau forests. We found weak evidence for competitive exclusion based on null models. Nevertheless, the contrasting trait composition observed between habitats revealed differences in the ecological attributes of the species in the different forest habitats. Our analyses suggest that competitive interactions may not play an important role in structuring leaf-litter ant assemblages locally. Rather, habitats are responsible for driving both taxonomic and functional composition of ant communities.

DiaryTous les événements

News items Toutes les brèves